Стандарты серии IEEE 802 Стандарты серии IEEE 802.

  1. Модель IEEE 802, ее соответствие эталонной модели OSI
  2. Структура стандартов IEEE 802">Структура стандартов IEEE 802
  3. Обзор стандартов:
    1. Краткая характеристика Ethernet (IEEE 802.3), IEEE 802.4 (Маркерная шина), IEEE 802.5 (Token Ring), 100Base-VG (IEEE 802.12)
    2. Стандарт на локальную сеть с интеграцией услуг (Integrated Services LAN) для подключения локальных сетей 802.х к общедоступным и частным магистральным сетям, таким как FDDI и ISDN (IEEE 802.9)
    3. Wireless Networks (IEEE 802.11)
    4. Стандарт широкополосной беспроводной связи IEEE 802.16
    5. Адаптивные, кольцевые, высокоскоростные сети IEEE 802.17
  4. Литература
  1. Модель IEEE 802, ее соответствие эталонной модели OSI
    В 1980 году в институте IEEE (Institute of Electrical and Electronics Engineers) был организован комитет 802 по стандартизации локальных сетей. Результатом его работы было принятие семейства протоколов IEEE 802, содержащих рекомендации по проектированию нижних уровней локальных сетей.
    Стандарты IEEE 802 охватывают только два нижних уровня семиуровневой эталонной модели OSI, а именно физический и канальный. Это связано с тем, что именно эти уровни в наибольшей степени отражают специфику локальных сетей.

    Рис.1 соответствие эталонных моделей OSI и IEEE 802

    На физическом уровне модели IEEE 802 специфицируются также и различные типы носителей, то есть среда передачи, что не входит в определение физического уровня эталонной модели OSI.
    В спецификации IEEE 802 канальный уровень (DLC) разделяется на уровень управления логическим каналом (Logical Link Control, LLC) и уровень управления доступом к носителю (Media Access Control, MAC).

  2. Структура стандартов IEEE 802
    Стандарты, разрабатываемые подкомитетом 802.1, носят общий для всех технологий характер. Именно в нём были разработаны общие определения локальных сетей и их свойств, определена связь эталонных моделей IEEE 802 и OSI.Также сюда входят стандарты межсетевого (internetworking) взаимодействия, описывающие взаимодействие между собой разных технологий, и стандарты построения более сложных сетей. Это, например, стандарт IEEE 802.1D, описывающий логику работы моста (коммутатора), стандарт IEEE 802.1Q, определяющий способ построения виртуальных локальных сетей (VLAN) в сетях на основе коммутаторов.
    Включение уровня LLC в стандарт IEEE позволило определить стандартный интерфейс в уровне MAC, однако пользуются настоящим LLC (т.е. LLC Type 2) не так уж и много протоколов - SNA и NetBEUI (NetBIOS Extended User Interface, расширенный пользовательский интерфейс NetBIOS), называемый также NetBIOS поверх LLC. Обычно применяются только заголовки LLC Type 1 в качестве заглушки (stub) для протоколов верхнего уровня. Стандартом LLC занимается подкомитет 802.2.
    Стандарты 802.3, 802.4, 802.5 описывают технологии, созданные на основе фирменных технологий. Основу стандарта IEEE 802.3 составила технология Ethernet, разработанная компаниями DEC, Intel и Xerox. Стандарт IEEE 802.4 создан на основе технологии ArcNet фирмы Datapoint Corporation. Стандарт IEEE 802.5 базируется на технологии Token Ring компании IBM.
    Исходные фирменные технологии и стандарты IEEE 802 в ряде случаев довольно долго существовали параллельно. Технология ArcNet так до конца и не была приведена в соответствие со стандартом IEEE 802.41. Из-за того, что IBM регулярно вносит усовершенствования в технологию Token Ring, периодически возникают расхождения между стандартом IEEE 802.5 и данной технологией.
    Сегодня комитет IEEE 802 включает следующие подкомитеты:
    • 802.1 Internetworking - объединение сетей;
    • 802.2 Logical Link Control, LLC - управление логической передачей данных;
    • 802.3 Ethernet - локальные сети Ethernet;
    • 802.4 Token Bus LAN - локальные сети с методом доступа Token Bus;
    • 802.5 Token Ring LAN - локальные сети с методом доступа Token Ring; (примерно в 1993 году производство оборудования ArcNet прекращено.)
    • 802.6 Metropolitan Area Network, MAN - региональные сети;
    • 802.7 Broadband Technical Advisory Group - техническая консультационная группа по широкополосной передаче;
    • 802.8 Fiber Optic Technical Advisory Group - техническая консультационная группа по волоконно-оптическим сетям;
    • 802.9 Integrated Voice and Data Networks - интегрированные сети передачи данных и голоса;
    • 802.10 Network Security - сетевая безопасность;
    • 802.11 Wireless Networks - беспроводные сети;
    • 802.12 Demand Priority Access LAN, 100VG-AnyLAN - локальные сети с методом доступа по требованию с приоритетами.
  3. Обзор стандартов:
    1. Краткая характеристика Ethernet (IEEE 802.3), IEEE 802.4 (Маркерная шина), IEEE 802.5 (Token Ring), 100Base-VG (IEEE 802.12)
      • Ethernet (IEEE 802.3)
        Метод доступа CSMA/CD
        Метод доступа к среде в технологии Ethernet является вариантом метода CSMA/CD, а именно метод CSMA/CD с двоичной экспоненциальной отсрочкой (Binary Exponential Backoff). В данном пункте мы рассмотрим эту конкретную реализацию.
        Если станция готова к передаче данных, она действует по следующему алгоритму.
        1. Станция ожидает освобождение канала.
        2. После освобождения канала перед непосредственно передачей станция выдерживает паузу, называемую межкадровым интервалом (Inter Packet Gap, IPG). Его длительность равна времени передачи 96 бит. Для скорости 10 Мбит/с она составляет 9,6 мкс, а для скорости 100 Мбит/с - 0,96 мкс. Эта пауза нужна для предотвращения монопольного захвата сети одной станцией. Во время передачи станция продолжает контролировать состояние канала. Если передаваемый и наблюдаемый сигнал отличаются, то считается, что обнаружена коллизия.
        3. Если конфликт выявляется во время передачи преамбулы, то оставшаяся часть преамбулы всё равно передаётся, чтобы усилить сигнал коллизии. Когда конфликт возникает во время пересылки остальной части кадра, станция пересылает последовательность из 32 бит, называемую jam-последовательностью.
        4. После прекращения передачи пакета станция ожидает случайное время, затем переходит к шагу 1.

        Двоичная экспоненциальная отсрочка.
        После возникновения коллизии время разбивается на дискретные промежутки, длительность каждого устанавливается равной 512 bt1. Назовём этот промежуток интервалом отсрочки.
        После первой коллизии станции ожидают 0 или 1 интервал отсрочки. После второй период ожидания длится 0, 1, 2 или 3 интервала отсрочки. Короче говоря, выбирается количество интервалов отсрочки из интервала [0, 2n .. 1], где n - номер попытки. После десятой попытки верхняя граница интервала фиксируется. После шестнадцатой попытки передатчик должен прекратить передачу и отбросить этот кадр.

        Форматы кадров ETHERNET
        В процессе развития Ethernet и стандарта IEEE 802.3 было предложено 4 формата кадров. В 1980 году консорциум трёх фирм DEC, Intel, Xerox представил на рассмотрение комитета 802.3 свою версию стандарта Ethernet (тип кадра Ethernet DIX), но комитет принял стандарт, отличающийся деталями (в том числе и форматом кадра) от предложения DIX (тип кадра 802.3/LLC). Novell, являющаяся в то время лидером сетевой индустрии в области персональных компьютеров, предложила свой формат кадра (Raw 802.3 или сырой кадр NetWare). Четвёртый вариант был предложен комитетом 802.2 для ликвидации недостатков формата кадра 802.3/LLC и приведение всех форматов кадров к общему знаменателю (тип кадра Ethernet SNAP).
        Каждый кадр начинается с преамбулы (Preamble) Длиной 7 байт, заполненной шаблоном 010101010 (для синхронизации источника и получателя). После преамбулы идёт байт начального ограничителя кадра (Start of Frame Delimiter, SFD), содержащий последовательность 0b10101011 и указывающий на начало собственно кадра.
        Далее идут поля адресов получателя (Destination Address, DA) и источника (Source Address, SA). В Ethernet используют 48-битные адреса MAC-уровня IEEE.
        Следующее поле имеет разный смысл и разную длину в зависимости от типа кадра.
        Далее идёт поле данных (Data). Если длина поля данных недостаточна для получения минимальной длины кадра, то вводится дополнительное поле заполнения (Padding), призванное обеспечить минимальную длину кадра.
        В конце кадра идёт 32-битное поле контрольной суммы (Frame Check Sequence, FCS). Контрольная сумма вычисляется по алгоритму CRC-32.
        Размер кадра Ethernet от 64 до 1518 байт (без учёта преамбулы, но с учётом поля контрольной суммы) (рис. 2).

        Рис. 2. Формат кадра Ethernet

      • Маркерная шина (IEEE 802.4)
        Стандарт IEEE 802.4 описывает свойства сетей, известных под названием маркерная шина. С точки зрения правил предоставления доступа этот стандарт схож с token ring. В качестве физической среды используется 75-омный кабель. При необходимости построения сети типа дерева, а также для увеличения длины сети используются повторители. Сеть способна обеспечить пропускную способность до 10 Мбит/с при полосе пропускания кабеля 12 МГц.
        Для доступа к сетевой среде станция должна получить пакет-маркер. Получив маркер, сетевое устройство может начать передачу данных, а завершив эту процедуру, устройство должно переслать маркер следующей сетевой станции. Передача маркера происходит до тех пор, пока он не достигнет младшей станции, после чего он возвращается первой станции. Формат кадра, пересылаемого по маркерной шине, имеет вид, представленный на рис. 3.


        Рис.3. Формат кадров 802.4.

        SD - (Start Delimiter) - стартовый байт-разделитель =**0**000, где * - символ, кодируемый неманчестерским кодом; FC - (Frame Control) поле управления кадром = FFxxxxxx, где FF - субполе формата кадра, а xxxxxx - биты типа кадра, SA и DA адреса отправителя и получателя, соответственно. FSC - (Frame Control Sequence) контрольная сумма (4 байта). ED - (End Delimiter) оконечный разграничитель =**1**11E (правый бит является 8-ым). MMM=000 - запрос, не требующий подтверждения; MMM=001 - запрос, требующий подтверждения, MMM=010 - отклик на запрос. PPP - биты приоритета (111 - высший приоритет, а 000 - низший). Значения кодов поля FC приведены в таблицe 1(цифрами обозначен порядок передачи разрядов).

        Таблица 1. Коды поля FC
        FF
        12
        xxxxxx
        345678
        Назначение
        00 CCCCCC Кадр управления доступом к сетевой среде
        01 MMMPPP Кадр управления логическим каналом
        01 YYYYYY Кадр управления станцией
        11 ZZZZZZ Зарезервировано на будущее

        Станции получают доступ к шине в результате соревновательной процедуры, называемой “окно откликов”. Окно откликов представляет собой временной интервал, равный по длительности одному системному такту, который в свою очередь равен времени распространения сигнала по шине. Это время отсчитывается от момента окончания передачи кадра управления. В течение этого времени станция-инициатор ожидает отклика от других станций. Любая станция сети, будучи владельцем маркера, может запустить этот процесс с помощью посылки кадра поиск следующей станции. Запросы на подключение осуществляются путем отправки пакета установка следующей станции, в поле данных которого записывается адрес станции, запрашивающей доступ к шине. Адрес следующей соседней станции меньше адреса станции-отправителя (маркер движется в направлении убывания адресов). Обычно посылается кадр с одним окном откликов. При этом запросы могут посылать станции с адресами не меньше, чем адрес ближайшего соседа. Если процесс инициализирован станцией с наименьшим номером, то посылается пакет с двумя окнами откликов, одно для станции с номером меньше, чем у предшественника, другое с адресом больше чем у предшественника. После этого станция ждет ответа в течение одного такта. Если ответа нет, маркер передается следующей станции. Если же получен один ответ, инициализируется подключение станции с помощью пакета установка следующей станции. При получении более одного отклика возникает конфликт, для разрешения которого посылается пакет разрешение конфликта с четырьмя окнами. Станции заносят свои запросы в окна в соответствии с первыми двумя битами своего адреса. Если попытка разрешить конфликт при этом не удалась, пакет отсылается повторно. В новой попытке участвуют только станции, участвовавшие в первом раунде, а для сравнения используются уже следующие два бита адреса. Процедура может завершиться подключением одной из станций или исчерпыванием числа попыток.
        Станция может отключиться от сети в любое время, но это вызовет инициализацию системы и временное нарушение работы сети. Поэтому для отключения от сети станция должна дождаться получения маркера, после чего она шлет пакет типа установка следующей станции, в поле данных которого находится адрес ее преемника. Если держатель маркера получит пакет, показывающий наличие в сети еще одного владельца маркера, он уничтожает свой маркер и переходит в режим ожидания. Получив маркер, станция должна начать передачу данных или передать его следующей станции. После передачи маркера станция в течение одного цикла прослушивает сеть, чтобы убедиться в активности своего преемника. Если преемник не посылает ничего в течении секунды, станция повторяет передачу маркера. Если и это не помогает, то посылается пакет "кто следующий?" с адресом преемника в поле данных и тремя окнами откликов. Если станция обнаруживает в поле данных адрес своего предшественника, она посылает кадр типа установка следующей станции по адресу отправителя. В отсутствии кадра установка следующей станции станция посылает такой пакет самой себе с двумя окнами для выявления активных сетевых устройств.
        При обнаружении потери маркера запускается процедура инициализации сети, при этом посылается пакет требование маркера. Станция, пославшая запрос, прослушивает шину и при обнаружении сетевой активности выбывает из соревнования (имеется станция с большим, чем у нее адресом). В сети определено 4 класса обслуживания (6, 4, 2, 0). Станция может передавать данные класса 6 в течение допустимого времени удержания маркера THT (для класса 6). При M станций в сети максимальное время ожидания будет равно THT*M. По завершении передачи данных класса 6 (или если они не передавались вовсе) можно передавать данные класса 4. Аналогично определено время обращения маркера для классов 4, 2 и 0.

      • Token Ring (IEEE 802.5)
        Сети Token Ring были разработаны фирмой IBM в 1970-х годах и рассчитана на скорость обмена 4.16 Мбит/c при числе сегментов до 250. По своей популярности она уступает лишь Ethernet/IEEE 802.3. Спецификация IEEE 802.5 практически идентична ей и полностью совместима. Сеть Token Ring имеет топологию звезды, все оконечные станции которой подключаются к общему устройству (MSAU - MultiStation Access Unit). В IEEE 802.5 топология не оговаривается, не регламентирована здесь и сетевая среда. В Token Ring сеть базируется на скрученных парах. Обе эти разновидности сети используют схему передачи маркера (небольшой пакет - token).
        В отличие от сетей с csma/cd доступом (например, Ethernet) в IEEE 802.5 гарантируется стабильность пропускной способности (нет столкновений). Сети Token Ring имеют встроенные средства диагностики, они более приспособлены для решения задач реального времени, но в то же время более дороги.
        Сети Token Ring имеют несколько механизмов для обнаружения и предотвращения влияния сетевых сбоев и ошибок. Например, пусть одна из станций выбрана в качестве активного монитора. Эта станция работает как центральный источник синхронизации для других станций сети и выполняет ряд других функций. Одной из таких функция является удаление из кольца бесконечно циркулирующих кадров (маркеров). Если отправитель ошибся, установив, например ошибочный адрес места назначения, это может привести к зацикливанию кадра. Ведь кадр может быть поврежден в пути и отправитель его уже не узнает. А это в свою очередь блокирует работу остальных станций. Активный монитор должен обнаруживать такие кадры, удалять их и генерировать новый маркер. Функции активного монитора часто выполняют MSAU. Попутно msau может контролировать, какая из станций является источником таких дефектных кадров, и вывести ее из кольца. Если станция обнаружила серьезную неполадку в сети (например, обрыв кабеля), она посылает сигнальный кадр (beacon). Такой кадр несет в себе идентификатор отправителя и имя соседа-предшественника (NAUN - nearest active upstream neighbour). Такой кадр инициализирует процедуру автореконфигурации, при которой узлы в районе аварии пытаются реконфигурировать сеть так, чтобы ликвидировать влияние поломки. Топологическая схема сети IEEE 802.5 представлена на рис.4.


        Рис. 4.Топология сети Token Ring

        Периферийные ЭВМ подключаются к блокам msau по схеме звезда, а сами MSAU соединены друг с другом по кольцевой схеме. Возможна реализация схемы звезда и иным способом, показанным на рис. 5. Здесь объединяющую функцию выполняет блок концентратора.

        Рис. 5. Реализация Token Ring по схеме звезда

        Концентратор может шунтировать каналы, ведущие к ЭВМ, с помощью специальных реле при ее отключении от питания. Аналогичную операцию может выполнить и блок msau. Управление сетью возлагаются на пять функциональных станций, определенных протоколом. Некоторые контрольные функции выполняются аппаратно, другие реализуются с помощью загружаемого программного обеспечения. Каждая из функциональных станций имеет свои логические (функциональные) адреса. Функциональные станции должны реагировать как на эти функциональные, так и на свои собственные аппаратные адреса. В сети используются кадры управления доступом к среде (УДС, код типа кадра = 00) и информационные кадры (код типа кадра =01). Имеется 25 разновидностей УДС-кадров(Управление доступом). Сюда входят кадры инициализации, управления средой, сообщения об ошибках и кадры управления рабочими станциями. Общий формат заголовка кадра Token Ring представлен на рис. 6. Размер поля данных, следующего за адресом отправителя, может иметь произвольную длину, в том числе и нулевую. В это поле может быть вложен пакет другого протокола, например, LLC.


        Рис. 6. Формат информационного кадра для IEEE 802.5

        В начале поля данных может размещаться LLC-заголовок, который содержит в себе 3-8 байт. Собственно этот заголовок, да поле управления кадром и отличают информационный кадр от кадра управления доступом (рис.7).


        Рис. 7. Формат кадра управления доступом для IEEE 802.5 (цифрами обозначены размеры полей в байтах) Вслед за адресом отправителя следует информация управления доступом к среде. Кадры управления доступом служат исключительно для целей управления сетью и не передаются через бриджи и маршрутизаторы. Управляющая информация включает в себя основной вектор и несколько субвекторов. Основной вектор задает тип УДС-кадра (или команду) и типы (или классы) станций отправителя и получателя, всего 4 байта. Субвекторы содержат информацию об адресе соседа-предшественника, номер физического отвода кабеля и пр.

      • 100Base-VG (IEEE 802.12)
        Сети 100BASE-VG (Voice Grade) используют звездообразную схему сетевых объектов с помощью соединения типа точка-точка. Эта разновидность сети может работать через кабельную инфраструктуру стандартной сети 10BASE-T. Станции подключаются к сети через концентратор (Hub). Когда станция желает что-либо передать, она посылает сигнал определенной частоты. Начало обмена стартует только после получения разрешения (сигнал специальной частоты, посылаемый концентратором. Широковещательные и мультикатинг-запросы обслуживаются в соответствии со схемой “запомнить и передать”. В одно и то же время допускается прием или передача только одного пакета. Для предоставления доступа используется карусельный принцип, что делает эту сеть весьма удобной для небольших рабочих групп и для решения задач управления в реальном масштабе времени. Имеется возможность и приоритетного обслуживания. В сети используется схема кодирования 5B/6B.

    2. Стандарт на локальную сеть с интеграцией услуг (Integrated Services LAN) для подключения локальных сетей 802.х к общедоступным и частным магистральным сетям, таким как FDDI и ISDN (IEEE 802.9)
    3. Wireless Networks (IEEE 802.11)
      Технология беспроводных сетей WLAN (Wireless LAN) развивается довольно быстро. Эти сети удобны для подвижных средств в первую очередь, но находят применние и в других областях (динамичные сети фирм, больницы и т.д.). Наиболее перспективным представляется проект IEEE 802.11, который должен играть для радиосетей такую же интегрирующую роль как 802.3 для сетей Ethernet и 802.5 для Token Ring. В протоколе 802.11 используется алгоритм доступа и подавления cтолкновений, похожий на 802.3, но здесь вместо соединительного кабеля используются радиоволны
      Стандарт 802.11 предполагает работу на частоте 2.4-2.4835 ГГц при использовании 4FSK/2FSK FHSS и DSSS-модуляции (Direct Sequence Spread Spectrum), мощность передатчика 10мВт-1Вт. В данном частотном диапазоне определено 79 каналов с полосой 1 Мбит/с каждый. Максимальная пропускная способность сети составляет 2 Мбит/с (в условии малых шумов). Первая локальная сеть 802.11a использовала метод OFDM (Orthogonal Frequency Division Multiplexing). Существует несколько модификаций стандарта и соответствующих регламентирующих документов

      • 802.11D - Additional Regulatory Domains
      • 802.11E - Quality of Service
      • 802.11F - Inter-Access Point Protocol (IAPP)
      • 802.11G - High data rates at 2.4 GHz
      • 802.11H - Dynamic Channel Selection and Transmission Power Control
      • 802.11i - Authentication and Security
      Существуют каналы, работающие в инфракрасном диапазоне длин волн (850 или 950 нм). Здесь возможны две скорости передачи 1 и 2 Мбит/с. При скорости 1 Мбит/c используется схема кодирования с группированием четырех бит в 16-битовое додовое слово, содержащее 15 нулей и одну 1 (код Грея). При передаче со скоростью 2 Мбит/c 2 бита преобразуются в 4-битовый код, содержащий лищь одну 1 (0001, 0010, 0100 и 1000).
      DSSS в 802.11 использут DBPSK (Differential Binary Phase Shift Keying) для 1 Мбит/с и DQPSK (Differential Quadrature Phase Shift Keying) для 2 Мбит/с, а высокоскоростное DSSS (DSSS/HR применяемое в IEEE 802.11b) использует схему модуляции ССК (Complementary Code Keying), которая допускает скорости передачи 5,5 и 11 Мбит/с. В случае DSSS каждый бит передается в виде 11 элементарных сигналов, которые называются последовательностью Баркера. Все эти три вида модуляции могут сосуществовать. В протоколе предусмотрена коррекция ошибок FEC (смотри описание в статье о Bluetooth). IEEE 802.11a специфицирует систему кодирования OFDM скорости передачи 6, 9, 12, 18, 24, 36, 48 и 54 Мбит/с. В последнее время широкое распространение получила модификации IEEE 802.11b (WiFi - Wireless Fidelity), которая может обеспечить скорость 1, 2, 5,5 и 11 Мбит/с (модуляция DSSS). Здесь применен алгоритм доступа к сетевой среде CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance). Для стандарта IEEE 802.11b доступно 11-14 радиоканалов в частотном диапазоне 2,4 ГГц. Здесь все зависит от местных регламентаций и ограничений. Возможно использование всенаправленных и узконаправленных антенн (последние для стационарных соединений точка-точка). Всенаправленная антенная система гарантирует связь для расстояний до 45 метров, а узконаправленная - до 45 км. При скорости 1 Мбит/с расстояние надежной связи может достигать нескольких сот метров. Предельно возможная скорость обмена определяется автоматически. Одновременно может обслуживаться до 50 клиентов. Важной особенностью является возможность работы с мобильными клиентаими. Улучшенная версия 802.11b называется 802.11g. Этот стандарт принят в 2001 году, в нем применяется метод модуляции OFDM. Теоретически максимальная скорость передачи составляет 54 Мбит/c.
      Топологически локальная сеть IEEE 802.11b строится вокруг базовой станции, через которую производится связь с Интернет. Но возможны схемы с несколькими базовыми станциями. В этом случае используется протокол STP (Spanning-Tree Protocol), чтобы исключить возможность формирования циклических структур. Базовые станции могут работать на одних и техже или на разных частотных диапазонах. Для организации совместной работы базовых станций используются сигнальные кадры (beacon), которые служат для целей синхронизации. Некоторые современные ноутбуки имеют встроенный Wi-Fi-адаптер. Родоначальником системы Wi-Fi считается Вик Хэйз. Точки доступа к Wi-Fi устанавливаются в библиотеках, кафе, аэропортах, магазинах и т.д.
      В 1992 году страны члены ЕС выделили диапазон частот 1,89-1,9 ГГц для целей построения сетей, базирующихся на применение радиосигналов (стандарт DECT - Digital European Cordless Telecommunications). Этот стандарт был разработан для целей передачи данных и голоса в системах сотовой связи. В США для этих же целей используются широкополосные системы с шумоподобным сигналом (SST - ШПС). Для подобных же целей выделены также частотные диапазоны 18 и 60ГГц (диапазон 2,4 ГГц сильно перегружен и “засорен” шумами). Существуют уже системы базирующиеся на Ethernet и Token Ring. Окончательная версия протокола IEEE 802.11 была утверждена в 1997 году.
      При относительно малых расстояниях проблем обычно не возникает и работу беспроводной сети действительно можно аппроксимировать алгоритмом CSMA. Но в случае, когда расстояние между передатчиком и приемником сравнимо с радиусом надежной связи, отличие от традиционных сетей становится значительным. Ведь для радиосетей важна интерференция на входе приемника, а не на выходе передатчика (как в CSMA). Рассмотрим вариант сети, изображенный на рис. 8. Если передачу осуществляет узел А, узел С находится вне его радиуса действия и может решить, что можно начать передачу. Излучение передатчика С может вызвать помехи на входе узла В (проблема скрытой станции).

      Рис. 8. Схема взаимодействия узлов в беспроводной сети MACA)

      В случае, когда передачу ведет узел В, узел С может решить, что начало передачи сообщения узлу D не возможно, так как в зоне С детектируется излучение станции В (проблема засвеченной станции). Таким образом, в радиосетях, прежде чем начать передачу данных надо знать, имеется ли радио активность в зоне приемника-адресата. В коротковолновых сетях возможна одновременная передача для нескольких адресатов, если они находятся в разных зонах приема.
      Ранние протоколы беспроводных локальных сетей базировались на схеме MACA (Multiple Access with Collision Avoidance), разработанной Ф. Карном в 1990 году. Эта схема является основой стандарта IEEE 802.11. В этой схеме отправитель запрашивает получателя послать короткий кадр, будучи принят соседями, предотвратит их передачу на время последующей передачи сообщения адресату. На рис. 8 узел В посылает кадр RTS (Request To Send) узлу C. Этот кадр имеет всего 30 октетов и содержит поле длины последующего сообщения. Узел C откликается посылкой кадра CTS (Clear To Send), куда копируется код длины последующего обмена из кадра RTS. После этого узел В начинает передачу. Окружающие станции, например D или E, получив CTS, воздерживаются от начала передачи на время, достаточное для передачи сообщения оговоренной длины. Станция A находится в зоне действия станции B, но не станции C и по этой причине не получит кадр CTS. По этой причине станция A может начинать передачу, если хочет и не имеет других причин, препятствующих этому. Несмотря на все предосторожности коллизия может иметь место. Например, станции A и C могут одновременно послать кадры RTS станции B. Эти кадры будут неизбежно потеряны, после псевдослучайной выдержки эти станции могут совершить повторную попытку передачи (как в ETHERNET). Стандарт 802.11 не может использовать алгоритм доступа CSMA/CD, работающий в Ethernet.
      В 1994 году схема MACA была усовершенствована и получила название MACAW. Было отмечено, что без подтверждения на канальном уровне потерянные кадры не будут переданы повторно, пока транспортный уровень много позднее не обнаружит их отсутствия. В усовершенствованной схеме требуется подтверждение получения любого информационного кадра, добавлен также механизм оповещения о перегрузке. Стандарт 802.11 поддерживает два режима работы: DCF (Distributed Coordination Function) и PCF (Point Coordination Function). Первый не имеет средств централизованного управления, второй - предполагает, что базовая станция берет на себя функцию управления локальной субсетью.

      В протоколе 802.11 используется алгоритм доступа CSMA/CA (CSMA with Collision Avoidance). При этом производится прослушивание физического и виртуального каналов. CSMA/CA может работать в двух режимах. В первом - станция перед до начала передачи прослушивает канал. Если канал свободен, она начинает передачу данных. При передаче канал не прослушивается и станция передает кадр полностью. Если канал занят, отправитель ждет его освобождения и только после этого начинает передачу. В случае коллизии станции, участвующие в этом событии, смогут начать передачу через псевдостучайный интервал времени (как в Ethernet). Второй режим CSMA/CA базируется на протоколе MACAW и использует контроль виртуального канала, как это показано на рис. 9. В показанном на рисунке примере станция А намеревается передать данные станции В Станция С находится в зоне доступности стации А и, возможно, станции В. Станция D входит в зону доступности станции В, но пребывает в зне зоны досигаемости станции А.

      Рис. 9. Прослушивание виртуального канала в протоколе CSMA/CA

      Когда станция А решает, что ей необходимо передать данные станции В, она посылет ей кадр RTS, запрашивая разрешение на передачу. Если В может принимать данные, она пришлет отклик в виде кадра CTS. После приема CTS станция А запускает таймер ACK и начинает пересылку данных. При успешном приеме станция В формирует кадр ACK, который посылается А, свидетельствуя о завершении обмена. Если время таймоута ACK истечет раньше, алгоритм повторяется с самого начала. Станция С также принимает кадр RTS и поэтому знает, что по кканалу будут передаваться данные, и по этой причине следует воздержаться от попыток передачи. Из данных, содержащихся в RTS станция С знает, сколько времени будет продолжаться передача и пребывает в пассивном состоянии. Индикацией этого состояния является последовательность NAV (Network Allocation Vector).Станция D не слышит RTS, передаваемый А, зато воспринимает CTS, посланный станцией В, и также выдает NAV. Следует учитывать, что сигналы NAV не передаются, а являются kbim внутренними напоминаниями хранить радиомолчание. При фрагментировании каждый фрагмент имеет свою контрольную сумму и его получение подтверждается индивидуально. Посылка фрагмента k+1 невозможна пока не получено подтверждение получения фрагмента k. После получения доступа к каналу отправитель может послать несколько кадров подряд. Если фрагмент доставлен с искажением, он пересылается повторно.
      Режимы PCF и DCF могут сосуществовать в пределах одной сотовой ячейки. Это достигается путем точного определения межкадрового интервала. Самый короткий интервал SIFS (Short Interframe Interval) используется для того, чтобы одна из сторон, ведущих диалог посредством кадров управления, могла получить возможность начать передачу первой. Всего регламентировано 4 разных типов межкадровых интервалов (SIFS, PIFS, DIFS и EIFS).
      Помимо WLAN в настоящее время разработаны стандарты для беспроводных региональных сетей WMAN (Wireless Metropolitan-Area Networks, напимер WiMAX) и WWAN (Wireless Wide-Area Networks) со скоростями обмена в десятки килобит в сек.
      В текущий момент насчитывается более полудюжины различных типов беспроводных сетей:

      • GSM Phase 2+
        Скорость обмена 9,6-14,4 кбит/c.
      • Mobitex
        Система (WWAN) разработана Ericsson и Swedish Telecom. Расстояние связи < 30 км. MTU=545 байт, скорость обмена 8 кбит/c. RTT может достигать 10 сек.
      • DataTAC
        Эта система известна также под именем ARDIS. Максимальное расстояние связи равно 20 км. Как и в Mobitex связь между базовой станцией и мобильным узлом DataTAC осуществляется в полудуплексном режиме. MTU=2048 байт, скорость обмена 19,2 кбит/с. Система базируется не на IP-технике.
      • CDPD (Cellular Digital Packet Data)
        Система разработана IBM и McCaw Cellular Communications в начале 90х. MTU=2048 байт, скорость обмена 19,2 кбит/c, время отклика составляет порядка 4 секунд. Обмен может производиться в режиме full duplex.
      • GPRS (Genetal Packet Radio Service)
        Система разработана ETSI в конце 1997 года и работает совместно с GSM. Система может работать с кодовыми схемами CS1, CS2, CS3 и CS4 при скоростях обмена до 60 кбит/c. Мобильные ЭВМ обычно работают с MTU=1500 байт в режиме full duplex.
      • EDGE (Enhanced Data for GSM Evolution)
        Систему называют также улучшенным GPRS, по основным параметрам совпадает со своим прототипом.
      К сожалению беспроводные, особенно мобильные каналы крайне ненадежны. Потери пакетов в таких каналах весьма вероятны. Понижение скорости передачи, как правило, не приводит к понижению вероятности потери. Кроме того, проходы от отправителя к получателю здесь неоднородны и могут включать в себя сегменты с различными методами транспортировки данных (проводные и беспроводные). В таких структурах бывает полезно разбить канал на две последовательные связи (indirect TCP). Преимуществом такой схемы является то, что оба виртуальных канала являются однородными. Таймауты в одном из соединений заставят отправителя замедлить темп передачи, в то время как таймауты во втором - могут ускорить обмен. Да и все остальные параметры связей могут оптимизироваться независимо. Основной недостаток этого приема заключается в нарушении базового принципа организации TCP-соединений на основе сокетов, здесь получение подтверждения отправителем не означает благополучной доставки. В 1995 году была предложена схема, не нарушающая TCP-семантику. В этой схеме вводится специальный агент-наблюдатель, который отслеживает состояние кэшей отправителя и получателя и посылает подтверждения. Этот агент при отсутствии своевременного подтверждения запускает процедуру повторной посылки сегмента, не информируя об этом первичного отправителя. Механизмы подавления перегрузки запускаются в этом варианте только при перегрузке проводной секции канала. При потерях реализуется выборочная пересылка сегментов.
      При работе с UDP также возникают некоторые трудности. Хотя известно, что UDP не гарантирует доставки, большинство программ, предполагает, что вероятность потери невелика. Программы используют такие способы преодоления потерь, которые при высокой вероятности потери просто не срабатывают. Многие приложения предполагают наличие достаточного запаса пропускной способности, чего в случае мобильной связи обычно нет.

    4. Стандарт широкополосной беспроводной связи IEEE 802.16
      Стандарт 802.16 уровня МАС предназначен для реализации широкополосных каналов последней мили в городских сетях (MAN). В отличии от 802.11 он ориентирован для соединения стационарных, а не мобильных объектов. Его задачей является обеспечения сетевого уровня между локальными сетями (IEEE 802.11) и региональными сетями (WAN), где планируется применение разрабатываемого стандарта IEEE802.20. Эти стандарты совместно со стандартом IEEE 802.15 (PAN - Personal Area Network - Bluetooth) и 802.17 (мосты уровня МАС) образуют взаимосогласованную иерархию протоколов беспроводной связи.
      Стандарт покрывает диапазон частот от 2 до 11 ГГц. Базовая станция BS, следующая стандарту 802.16, размещается в здании или на вышке и осуществляет связь со станциями клиентов (SS - Subscriber Station) по схеме точка-мультиточка (PMP). Возможен сеточный режим связи (Mesh - сетка связей точка-точка - PTP), когда любые клиенты (SS) могут осуществлять связь между собой непосредственно, а антенные системы, как правило, являются всенаправленными. Базовая станция предоставляет соединение с основной сетью и радиоканалы к другим станциям. Диапазон рабочих расстояний может достигать 30 миль (в случае прямой видимости) при типовом радиусе сети 4-6 миль (для режима Mesh при высоте размещения антенны BS - 50м), где пропускная способность может быть гарантированной. Предусмотрен также режим мультиточка-мультиточка (MP- MP), который имеет ту же функциональность, что и PMP. Клиентская станция (SS) может быть радио терминалом или повторителем (более типично) для организации локального трафика. Трафик может проходить через несколько повторителей, прежде чем достигнет клиента. Антенны в этом случае являются направленными с возможностью дистанционной настройки. Терминальная станция клиента (SS) обычно имеет остронаправленную антенну. По этой причине положение антенны должно быть жестко фиксировано и устойчиво к ветру и другим потенциальным источникам вибрации. Широкополосные системы доступа к радио сети помимо BS и SS содержат клиентское терминальное оборудование (TE), оборудование основной сети, межузловые каналы и повторители (RS). Повторители используются часто тогда, когда между конечными точками канала нет прямой видимости. Повторитель передает сигнал от BS к одной или нескольким SS. В системах MP-MP большинство станция являются повторителями. PTP-соединения (точка-точка) между базовыми станциями могут поддерживать обмен согласно стандартам от DS-3 до OC-3.
      Канал связи предполагает наличие двух практически независимых направлений обмена: отправитель-получатель (uplink - восходящий канал) и получатель-отправитель (downlink - нисходящий канал; по аналогии со спутниковыми каналами). Эти два субканала используют разные неперекрывающиеся частотные диапазоны. Данный стандарт относится к уровню L2, хотя его взаимосвязь с физическим уровнем (PHY) достаточно тесная.
      При формировании радиосетей определенную проблему составляет интерференция сигналов смежных каналов и наложении перекрестных наводок с тепловыми шумами.
      Стандартный полнодуплексный канал базовой станции может иметь пропускную способность 75 Мбит/с. Такой канал обеспечивает до 60 соединений Т1 и сотни связей с домами, использующими DSL-подключения (при полосе 20 МГц). В последнем случае предоставляется качество обслуживания (QoS) на уровне "наилучшего возможного". При этом предоставляется минимальные задержки, что важно при передаче голоса (например, в режиме VoIP). Схема взаимодействия радиосетей в случае использования стандарта IEEE 802.16 показана на рис. 10.


      Рис. 10. Место стандарта IEEE 802.16 в системе радио коммуникаций

      Стандарт 802.16 может решать задачи, которые возникают в каналах с асимметричным трафиком. Сейчас они часто решаются клиентами и сервис-провайдерами путем заказа выделенных линий. Внедрение нового стандарта позволит отказаться от выделенных каналов, обходясь во многих случаях исключительно беспроводными средствами.

      Краткие характеристики:

      1. Пропускная способность до 135 Мбит/с при полосе несущей 28 МГц.
      2. Модуляция OFDM - 64-QAM
      3. Доступ к среде адаптивный, динамический
      4. Управление сетью централизованное

      Таблица 2. Краткие характеристики семейства стандартов 802.16
      Название стандарта 802.16 802.16a 802.16e
      Дата принятия декабрь 2001 январь 2003 середина 2004
      Частотный диапазон 10-66 ГГц 2-11 ГГц 2-6 ГГц
      Быстродействие 32-135 Мбит/с
      для 28МГц-канала
      до 75 Мбит/с
      для 28МГц-канала
      до 15 Мбит/с
      для 5МГц-канала
      Модуляция QPSK, 16QAM, 64QAM OFDM 256, QPSK, 16QAM, 64QAM OFDM 256, QPSK, 16QAM, 64QAM
      Ширина канала 20, 25 и 28 МГц Регулируемая
      1,5-20МГц
      Регулируемая
      1,5-20МГц
      Радиус действия 2-5 км 7-10 км
      макс. радиус 50 км
      2-5 км
      Условия работы Прямая видимость Работа на отражениях Работа на отражениях

      Стандарт 802.16е предназначен для мобильных систем. Безопасность в сети обеспечивается на уровне протокола 3-DES.

    5. Адаптивные, кольцевые, высокоскоростные сети IEEE 802.17
      Региональные сети МАN обычно выполняют функции опорных сетей. В качеcтве MAN часто использовались FDDI, Token Ring или SDH. Кольцевая топология сети обеспечивает высокую надежность (при использовании двойного кольца) и удобна для работы с оптическими волокнами. Топология звезды уязвима в случае выхода из строя центрального узла. Топология сетки гарантирует высокую надежность, но существенно дороже кольца. Так как сети FDDI с их полосой 100 Мбит/c устарели, а Token Ring еще медленнее, приемлемого современного решения нет. Первая опорная сеть в РФ (ЮМОС, 1993г) была выполнены с применением именно технологии FDDI. В FDDI пакеты уничтожаются отправителем и по этой причине совершают полный круг. Маркерный доступ в принципе имеет определенные ограничения. Сегодня требуются адаптивные решения для региональных опорных сетей (МАN). Здесь желательны подходы, гарантирующие равноправное распределение ресурсов между разными потоками. Конечно, можно использовать решения, предлагаемые SONET (SDH). Но SDH гарантирует определенную полосу при связи точка-точка, но при этом неиспользуемая пропускная способность не может быть предложена для транспортировки других потоков. Можно построить кольцевую сеть на основе Гига-Ethernet (GE). Но этот протокол не может гарантировать равные возможности для разных потоков, да и эффективность использования доступной полосы нельзя признать хорошей. Низкая эффективность связана с тем, что протокол STP блокирует некоторые связи, препятствую образованию петлевых маршрутов, что в некоторых случаях удлиняет путь. GE, несмотря на ряд привлекательных черт, имеет четыре ограничения.
      Во-первых, Ethernet лишен механизмов выравнивания возможностей для разных потоков. Во-вторых, протокол STP запрещает кольцевые маршруты и один из участков кольцевой сети должен быть блокирован или замыкаться через маршрутизатор, что уводит сеть с уровня L2. В-третьих, когда канал или узел отказывает, дерево связей Ethernet должно выть заново вычислено, а это может потребовать нескольких сотен миллисекунд. Определенное замедление может вызвать восстановление связности, когда используется протокол маршрутизации уровня L3. Наконец, хотя GE может предоставить простую схему приоритетного обслуживания, такая сеть не имеет механизмов гарантирования полосы пропускания, задержки и разброса времени доставки, которые имеют SONET и RPR.
      Кольца SONET обеспечивают связь между узлами кольца по схеме точка-точка. SONET может гарантировать базовые параметры качества обслуживания. Время восстановления такой сети в случае отказа измеряется десятками миллисекунд. Основным недостатком SONET является неэффективность использования доступной полосы. Если все узлы требуют соединения со всеми, кольцо с N узлами будет требовать N2 соединений. Даже при ограниченном числе узлов в кольце, например при N=100, это может вызвать определенные проблемы.
      Начиная с 2000 года, разрабатывается новый протокол для опорных региональных сетей с двойной кольцевой топологией. Этот протокол IEEE 802.17 называется RPR (Resilient Packet Ring - адаптивное кольцо для пакетов). В отличие от FDDI (а также Token Ring или DQDB) в этом протоколе пакеты удаляются из кольца узлом-адресатом, что позволяет осуществлять несколько обменов одновременно. Но такая схема параллельных обменов осложняет равенство возможностей для разных узлов в кольце. Кроме того, схема уничтожения пакета отправителем имеет и определенные преимущества. Так транспортировка пакета от получателя к отправителю обеспечивает подтверждение получения, что все равно надо делать, например, в случае протокола ТСР. Для пояснения особенностей работы RPR рассмотрим схему на рис. 11, где четыре потока совместно используют канал 4, чтобы достичь узла 5. В этом примере каждый из этих потоков должен получить 1/4 долю полосы (алгоритм "parallel parking lot").


      Рис.11.

      Чтобы полностью использовать имеющиеся ресурсы на участке <1-2>, можно пропустить через канал еще 3/4 от того, что протекает между узлами 1 и 5. Чтобы максимально возможно использовать имеющиеся ресурсы, узлы должны взаимодействовать друг с другом. Таким образом, для обеспечения равенства доступа к ресурсам алгоритм должен дросселировать трафик на входе узлов.
      В RPR также как и в Ethernet пакет удаляется в точке назначения, что позволяет использовать незадействованную часть кольца. RPR реализует алгоритм распределенного выравнивания возможностей для разных потоков. Протокол не использует алгоритм STP и по этой причине может работать с замкнутыми маршрутами без ограничений. Кольца RPR транспортируют пакеты по пути вдоль кольца с минимальным числом шагов. Если какой-то узел или двунаправленный участок кольца откажет, RPR формирует альтернативный маршрут за время не более 50 мсек. Например, если канал между узами 4 и 5 будет оборван, узлы 4 и 5 будут соединены по маршруту 4-3-2-1-10-9-8-7-6-5.
      Наконец, в RPR можно определить несколько классов трафика, что крайне важно для мультимедийных приложений. Класс А реализует канальное соединение между узлами кольца с гарантированной полосой, задержкой доставки и дисперсией времени доставки (аналогично SONET, но без ограничений дискретных значений полосы - OC-3, OC-12 и т.д.). Класс В имеет гарантированную полосу, но допускает кратковременные возрастания трафика сверх согласованных значений за счет потоков, которые не имеют гарантии полосы. Класс С предлагает услуги типа "лучшее-что-возможно", при этом не гарантируются никакие параметры трафика.
      Целью RPR является одновременное достижение равных возможностей для разных потоков и высокая эффективность использования имеющихся ресурсов. Достижение равных возможностей можно проследить на примере реализации алгоритма "parallel parking lot" на рис. 11. Региональный сервис-провайдер стремится предоставить равные возможности всем клиентам, вне зависимости оттого, к какому узлу они подключены. На рис. 11 это означает предоставление каждому из потоков 1/4 полосы пропускания узла 5. Требования высокой эффективности использования ресурсов предполагают возможность привлечения всех ресурсов, незадействованных для обеспечения равных возможностей для всех конкурирующих потоков. Примером использования имеющихся ресурсов является поток между узлами 1 и 2 на рис. 11, который использует до 75% пропускной способности этого канала. Если реализовать указанные цели, то любые два узла в кольце смогут обмениваться данными со скоростью, ограниченной уровнем насыщения (перегрузки) канала. Таким образом, целью алгоритма справедливого распределения ресурсов является дросселирование потоков во входных точках, чтобы обеспечить равенство доступа к ресурсам.
      Это означает, что в случае, показанном на рис. 10, поток между узлами 1 и 5 должен быть дросселирован в точке 1 до уровня 0.25 от пропускной способности участка 4-5, оставляя доступной полосу на участке 1-2 на уровне 75%. Такое идеальное поведение может быть описано с помощью модели RIAS (Ring Ingress Aggregated with Spatial Reuse). Модель RIAS содержит в себе два ключевых компонента. Первый - определяет степень гранулярности трафика для определения справедливости распределения ресурсов. Модель RIAS гарантирует, что все узлы отправители получат равные доли полосы пропускания для каждого канала относительно долей других узлов отправителей. Второй компонент RIAS гарантирует максимальное использование ресурса сети при равном выделении полосы пропускания. Ресурс полосы может анонсироваться, если он не затребован или если не может быть использован из-за наличия узкого места где-то в другом узле или канале. Похожий (но несколько отличный от RPR) алгоритм распределения ресурсов реализован протоколом ТСР в сетях Интернет (уровень L4), здесь же это прелагается делать на уровне L2.
      В случае класса А узлам запрещается анонсировать неиспользуемые ресурсы. Рассмотрим работу алгоритма для классов В (фиксированная полоса) и С ("лучшее-что-возможно"), в которых каждый узел анонсирует неиспользуемую полосу взвешенным образом. Архитектура RPR-узла показана на рис. 12. Весь трафик, входящий в кольцо, дросселируется контроллерами потоков. В случае алгоритма "parallel parking lot" поток <1-5> должен быть снижен до уровня 1/4. Контроллеры потоков работают с учетом гранулярности, определяемой адресатом. Трафик делится на две категории в зависимости оттого, проходит ли он через перегруженный учаcток. Протокол RPR поддерживает обслуживание выходных очередей, как это делается в обычных переключателях.


      Рис.12.

      Узлы RPR имеют модули измерения (счетчики байт), которые контролируют информационный поток станции и транзитные потоки. Результаты этих измерений используются алгоритмом справедливого распределения ресурсов полосы пропускания (fairness algorithm) для вычисления параметров управляющего сигнала, направляемого вышестоящим узлам для дросселирования их потоков. Узлы, которые получают такие сообщения, используют полученные данные совместно с локальной информацией для управления контроллерами входных потоков.

      Узел, кроме того, содержит планировщик, который осуществляет арбитраж для внутренних и транзитных потоков. В режиме одной очереди для транзитного потока имеется один буфер типа FIFO, эта очередь называется PTQ (primary transit queue). В этом случае планировщик предоставляет абсолютный приоритет транзитному трафику по отношению к локальному. В режиме двойной очереди (dual-queue mode) имеется две транзитные очереди, одна для класса А (PTQ) и одна для класса В и С - STQ (secondary transit queue). В этом режиме планировщик всегда обслуживает в первую очередь трафик класса А. Трафик класса А самой станции будет обслужен сразу после PTQ, если STQ не заполнена. В противном случае планировщик обслуживает сначала трафик STQ, гарантируя отсутствие потерь. При прочих равных условиях планировщик использует карусельный принцип обслуживания очереди STQ для транзитного трафика и трафика станции классов В и С до тех пор, пока не будет достигнут порог для STQ. Когда достигается порог буфера STQ, транзитный трафик STQ получает преимущество по отношению к трафику станции.
      В обоих случаях определяющим является стремление к простоте оборудования (исключение дорогостоящих решений с индивидуальными очередями для каждого потока или каждого входа) и подавлению потерь. Пакет, вошедший в кольцо не должен быть потерян в последующих узлах.

  4. Литература
    1. К.Е. Самуйлов, Д.С. Кулябов. Учебно-методическое пособие по курсу "Сети и системы телекоммуникаций".- М.: РУДН.- 2002
    2. Семёнов Ю.А. Телекоммуникационные технологии.
    Hosted by uCoz

    Hosted by uCoz